%matplotlib inlineimport matplotlibimport numpy as npimport pandas as pdimport osimport matplotlib.pylab as plt
files = [f for f in os.listdir("/sw/apps/nasa") if f.endswith('csv')]
frames = []idx =0for f in files: print(f) frames.append(pd.read_csv("/sw/apps/nasa/{}".format(f), header=None, names=["position","unixepoc","sdate", "stime", "metric", "val"])) frames[idx] = frames[idx].assign(timestamp=lambdax: x.sdate+""+x.stime) frames[idx].timestamp = pd.to_datetime(frames[idx].timestamp) frames[idx] = frames[idx].drop(['sdate','stime','position','unixepoc','val'], axis=1) frames[idx] = frames[idx].set_index(['timestamp']) frames[idx].sort_index(inplace=True) idx +=1
barometric pressure.csvhumidity.csvsolar radiation.csvsunrise.csvsunset.csvtemperature.csvwind direction in degrees.csvwind speed.csv
Barometric Pressure
frames[0].metric.plot(figsize=(16,5))
<matplotlib.axes._subplots.AxesSubplot at 0x11c9a3198>

Humidity
frames[1].metric.plot(figsize=(16,5))
<matplotlib.axes._subplots.AxesSubplot at 0x1193dca90>

Solar Radiation
frames[2].metric.plot(figsize=(16,5))
<matplotlib.axes._subplots.AxesSubplot at 0x1193f6278>

Sunrise
frames[3].metric.plot(figsize=(16,5))
<matplotlib.axes._subplots.AxesSubplot at 0x11d7ec940>

Sunset
frames[4].metric.plot(figsize=(16,5))
<matplotlib.axes._subplots.AxesSubplot at 0x11d7885f8>

Temperature
frames[5][frames[5].index.month==12].plot(figsize=(16,5))
<matplotlib.axes._subplots.AxesSubplot at 0x12379cda0>

frames[5][frames[5].index.month==12].metric.describe()
count 8164.000000mean 47.608893std 4.994597min 34.00000025% 45.00000050% 47.00000075% 50.000000max 62.000000Name: metric, dtype: float64
frames[5].metric.plot(figsize=(16,5))
<matplotlib.axes._subplots.AxesSubplot at 0x11d17a550>

Wind Direction
frames[6].metric.plot(figsize=(16,5))
<matplotlib.axes._subplots.AxesSubplot at 0x11d0c6cf8>

Wind Speed
frames[7].metric.plot(figsize=(16,5))
<matplotlib.axes._subplots.AxesSubplot at 0x11d7aec88>
